Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Sci Rep ; 14(1): 9141, 2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644371

RESUMEN

Tuberculosis remains a large health threat, despite the availability of the tuberculosis vaccine, BCG. As BCG efficacy gradually decreases from adolescence, BCG-Prime and antigen-booster may be an efficient strategy to confer vaccine efficacy. Mycobacterial DNA-binding protein 1 (MDP1, namely Rv2986c, hupB or HU) is a major Mycobacterium tuberculosis protein that induces vaccine-efficacy by co-administration with CpG DNA. To produce MDP1 for booster-vaccine use, we have created recombinant MDP1 produced in both Escherichia coli (eMDP1) and Mycolicibacterium smegmatis (mMDP1), an avirulent rapid-growing mycobacteria. We tested their immunogenicity by checking interferon (IFN)-gamma production by stimulated peripheral blood cells derived from BCG-vaccinated individuals. Similar to native M. tuberculosis MDP1, we observed that most lysin resides in the C-terminal half of mMDP1 are highly methylated. In contrast, eMDP1 had less post-translational modifications and IFN-gamma stimulation. mMDP1 stimulated the highest amount of IFN-gamma production among the examined native M. tuberculosis proteins including immunodominant MPT32 and Antigen 85 complex. MDP1-mediated IFN-gamma production was more strongly enhanced when combined with a new type of CpG DNA G9.1 than any other tested CpG DNAs. Taken together, these results suggest that the combination of mMDP1 and G9.1 possess high potential use for human booster vaccine against tuberculosis.


Asunto(s)
Vacuna BCG , Proteínas Bacterianas , Proteínas de Unión al ADN , Interferón gamma , Mycobacterium tuberculosis , Procesamiento Proteico-Postraduccional , Humanos , Interferón gamma/metabolismo , Proteínas Bacterianas/inmunología , Vacuna BCG/inmunología , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Mycobacterium tuberculosis/inmunología , Proteínas Recombinantes/inmunología , Oligodesoxirribonucleótidos/farmacología , Tuberculosis/prevención & control , Tuberculosis/inmunología , Islas de CpG , Mycobacterium smegmatis/inmunología , Mycobacterium smegmatis/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Femenino
2.
Microbiol Immunol ; 68(4): 130-147, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38294180

RESUMEN

Vaccination is an important factor in public health. The recombinant bacillus Calmette Guérin (rBCG) vaccine, which expresses foreign antigens, is expected to be a superior vaccine against infectious diseases. Here, we report a new recombination platform in which the BCG Tokyo strain is transformed with nucleotide sequences encoding foreign protein fused with the MPB70 immunogenic protein precursor. By RNA-sequencing, mpb70 was found to be the most transcribed among all known genes of BCG Tokyo. Small oligopeptide, namely, polyhistidine tag, was able to be expressed in and secreted from rBCG through a process in which polyhistidine tag fused with intact MPB70 were transcribed by an mpb70 promoter. This methodology was applied to develop an rBCG expressing the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2. Immunoblotting images and mass spectrometry data showed that RBD was also secreted from rBCG. Sera from mice vaccinated with the rBCG showed a tendency of weak neutralizing capacity. The secretion was retained even after a freeze-drying process. The freeze-dried rBCG was administered to and recovered from mice. Recovered rBCG kept secreting RBD. Collectively, our recombination platform offers stable secretion of foreign antigens and can be applied to the development of practical rBCGs.


Asunto(s)
Vacuna BCG , Mycobacterium bovis , Animales , Ratones , Vacuna BCG/genética , Tokio , Mycobacterium bovis/genética , Activación de Linfocitos , Ingeniería Genética , Vacunas Sintéticas
3.
Trop Med Health ; 52(1): 12, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233936

RESUMEN

BACKGROUND: Healthy eating habits are essential for improving nutritional status and strengthening immunity against infectious diseases. This study examined the relationship between diet quality and stunting in school-aged children in an infectious disease-endemic area of western Kenya. METHODS: This cross-sectional study included 260 school-aged children (age 9-17 years) enrolled in primary schools in Mbita Sub-county, western Kenya. The nutritional status was assessed using anthropometric measurements. Dietary intake was measured using food frequency questionnaires and evaluated using the Food Pyramid (FP) score, which indicates adherence to the Kenyan food-based dietary guideline. Information on the children's age, sex, maternal education, and household wealth index was collected using a household-based questionnaire. Infections with the predominant parasites, such as Schistosoma (S.) mansoni, were detected via microscopy. The trend associations of the FP score with food group intake were examined to characterize the dietary intake of this population. Logistic regression analysis was performed to investigate the relationship between stunting and FP score tertiles, adjusted for sociodemographic and economic indicators and parasitic infection status. RESULTS: Among the studied schoolchildren, 15.0% exhibited stunting, while 76.2% were infected with S. mansoni. The mean FP score was 25.6 out of 50 points. A higher FP score was characterized by a high intake of roots and tubers, dairy products, pulses, and fruits and a low intake of cereals and animal-source foods. The analysis revealed a trend: a lower risk of stunting was evident in groups with elevated FP scores (p for trend = 0.065). However, these trend associations were observable among subjects with either negative or light S. mansoni infection (p for trend = 0.016). CONCLUSIONS: A higher quality diet, as evaluated by FP scores, was associated with a low risk of stunting among school-aged children. Notably, this association seemed to weaken in the presence of a high burden of S. mansoni infection. It highlights the importance of enhancing dietary quality through the promotion of diverse nutrient-dense foods alongside effective S. mansoni infection control for improved growth. This study contributes fundamental knowledge for understanding the diet-malnutrition relationship in areas endemic for S. mansoni infection.

4.
Nucleic Acids Res ; 52(2): 816-830, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38048321

RESUMEN

Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria.


Asunto(s)
Empaquetamiento del ADN , Proteínas Intrínsecamente Desordenadas , Mycobacterium , ADN/metabolismo , Histonas , Proteínas Intrínsecamente Desordenadas/metabolismo , Mycobacterium/metabolismo
6.
Biochem Biophys Res Commun ; 681: 111-119, 2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-37774568

RESUMEN

The basic, intrinsically disordered regions of eukaryotic histones and their bacterial counterparts are presumed to act as signaling hubs to regulate the compaction of chromosomes or nucleoids and various DNA processes such as gene expression, recombination, and DNA replication. Posttranslational modifications (PTMs) on these regions are pivotal in regulating chromosomal or nucleoid compaction and DNA processes. However, the low sequence complexity and the presence of short lysine-rich repeats in the regions have hindered the accurate determination of types and locations of PTMs using conventional proteomic procedures. We described a limited proteolysis protocol using trypsin to analyze PTMs on mycobacterial DNA-binding protein 1 (MDP1), a nucleoid-associated protein in mycobacterial species that possesses an extended, lysine-rich, intrinsically disordered region in its C-terminal domain. This limited proteolysis approach successfully revealed significant methylation on many lysine residues in the C-terminal domain of MDP1 purified from Mycobacterium tuberculosis, which was lacking in the corresponding region of recombinant MDP1 expressed in Escherichia coli.

7.
Sci Rep ; 13(1): 12685, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542102

RESUMEN

Accurate point-of-care testing (POCT) is critical for managing tuberculosis (TB). However, current antibody-based diagnosis shows low specificity and sensitivity. To find proper antigen candidates for TB diagnosis by antibodies, we assessed IgGs responsiveness to Mycobacterium tuberculosis proteins in pulmonary TB (PTB) patients. We employed major secreted proteins, such as Rv1860, Ag85C, PstS1, Rv2878c, Ag85B, and Rv1926c that were directly purified from M. tuberculosis. In the first screening, we found that IgG levels were significantly elevated in PTB patients only against Rv1860, PstS1, and Ag85B among tested antigens. However, recombinant PstS1 and Ag85B from Escherichia coli (E. coli) couldn't distinguish PTB patients and healthy controls (HC). Recombinant Rv1860 was not checked due to its little expression. Then, the 59 confirmed PTB patients from Soetomo General Academic Hospital, Surabaya, Indonesia, and 102 HC were tested to Rv1860 and Ag85B only due to the low yield of the PstS1 from M. tuberculosis. The ROC analysis using native Ag85B and Rv1860 showed an acceptable area under curve for diagnosis, which is 0.812 (95% CI 0.734-0.890, p < 0.0001) and 0.821 (95% CI 0.752-0.890, p < 0.0001). This study indicates that taking consideration of native protein structure is key in developing TB's POCT by antibody-based diagnosis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Proteínas Bacterianas/química , Antígenos Bacterianos , Escherichia coli/metabolismo , Tuberculosis Pulmonar/diagnóstico , Tuberculosis/diagnóstico , Anticuerpos Antibacterianos
8.
Sci Rep ; 13(1): 14157, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644087

RESUMEN

Survival of the live attenuated Bacillus Calmette-Guérin (BCG) vaccine amidst harsh host environments is key for BCG effectiveness as it allows continuous immune response induction and protection against tuberculosis. Mycobacterial DNA binding protein 1 (MDP1), a nucleoid associated protein, is essential in BCG. However, there is limited knowledge on the extent of MDP1 gene regulation and how this influences BCG survival. Here, we demonstrate that MDP1 conditional knockdown (cKD) BCG grows slower than vector control in vitro, and dies faster upon exposure to antibiotics (bedaquiline) and oxidative stress (H2O2 and menadione). MDP1-cKD BCG also exhibited low infectivity and survival in THP-1 macrophages and mice indicating possible susceptibility to host mediated stress. Consequently, low in vivo survival resulted in reduced cytokine (IFN-gamma and TNF-alpha) production by splenocytes. Temporal transcriptome profiling showed more upregulated (81-240) than downregulated (5-175) genes in response to MDP1 suppression. Pathway analysis showed suppression of biosynthetic pathways that coincide with low in vitro growth. Notable was the deferential expression of genes involved in stress response (sigI), maintenance of DNA integrity (mutT1), REDOX balance (WhiB3), and host interactions (PE/PE_PGRS). Thus, this study shows MDP1's importance in BCG survival and highlights MDP1-dependent gene regulation suggesting its role in growth and stress adaptation.


Asunto(s)
Vacuna BCG , Insuficiencia Renal Crónica , Animales , Ratones , Peróxido de Hidrógeno , Proteínas de Unión al ADN/genética , Aclimatación
9.
Front Immunol ; 14: 1222428, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520555

RESUMEN

Introduction: Controlling pulmonary Mycobacterium avium complex (MAC) disease is difficult because there is no way to know the clinical stage accurately. There have been few attempts to use cell-mediated immunity for diagnosing the stage. The objective of this study was to characterize cytokine profiles of CD4+T and CD19+B cells that recognize various Mycobacterium avium-associated antigens in different clinical stages of MAC. Methods: A total of 47 MAC patients at different stages based on clinical information (14 before-treatment, 16 on-treatment, and 17 after-treatment) and 17 healthy controls were recruited. Peripheral blood mononuclear cells were cultured with specific antigens (MAV0968, 1160, 1276, and 4925), and the cytokine profiles (IFN-γ, TNF-α, IL-2, IL-10, IL-13, and IL-17) of CD4+/CD3+ and CD19+ cells were analyzed by flow cytometry. Results: The response of Th1 cytokines such as IFN-γ and TNF-α against various antigens was significantly higher in both the on-treatment and after-treatment groups than in the before-treatment group and control (P < 0.01-0.0001 and P < 0.05-0.0001). An analysis of polyfunctional T cells suggested that the presence of IL-2 is closely related to the stage after the start of treatment (P = 0.0309-P < 0.0001) and is involved in memory function. Non-Th1 cytokines, such as IL-10 and IL-17, showed significantly higher responses in the before-treatment group (P < 0.0001 and P < 0.01-0.0001). These responses were not observed with purified protein derivative (PPD). CD19+B cells showed a response similar to that of CD4+T cells. Conclusion: There is a characteristic cytokine profile at each clinical stage of MAC.


Asunto(s)
Enfermedades Pulmonares , Infección por Mycobacterium avium-intracellulare , Humanos , Complejo Mycobacterium avium , Interleucina-10 , Interleucina-17 , Interleucina-2/uso terapéutico , Factor de Necrosis Tumoral alfa/uso terapéutico , Leucocitos Mononucleares , Citocinas
10.
Int J Mycobacteriol ; 12(2): 122-128, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37338471

RESUMEN

Background: The atpE gene is a target for bedaquiline (Bdq)-activating drug action and mutations in the gene are fixed to cause resistance. However, changes in the amino acid of ATPase have been little reported from a clinical setting since it was first used in 2015 in Indonesia. This study aims to observe the sequence of nucleotide and amino acid from rifampicin-resistant (RR) pulmonary tuberculosis (TB) patients, both new and relapse cases treated with Bdq. Methods: This is an observational descriptive study performed in the referral hospital Dr Soetomo, Indonesia, at August 2022-November 2022. We performed Sanger sequencing and comparison of the atpE gene from the patient's sputum from August to November 2022 to wild-type Mycobacterium tuberculosis H37Rv and species of mycobacteria using BioEdit version 7.2 and BLAST NCBI software. We also conducted an epidemiological study on patients' characteristics. This study uses a descriptive statistic to show the percentage of data. Results: The total of 12 M. tuberculosis isolates showed that the atpE gene sequence was 100% similar to the wild-type M. tuberculosis H37Rv. No single-nucleotide polymorphisms or mutations were found, and no change in the amino acid structure at position 28 (Asp), 61 (Glu), 63 (Ala), and 66 (Ile). The percentage identity of atpE to M. tuberculosis H37Rv and M. tuberculosis complex was 99%-100%, while the similarity with the other mycobacteria species other than TB (Mycobacterium avium complex, Mycobacterium abscessus, and Mycobacterium lepraemurium) was 88%-91%. Conclusions: This study revealed M. tuberculosis -atpE gene sequence profile of RR-TB patients had no mutations, as the specific gene region, and no change in the amino acid structure. Therefore, Bdq can be continually trusted as an effective anti-tubercular drug in RR-TB patients.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis Pulmonar , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Indonesia , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Nucleótidos/farmacología , Pruebas de Sensibilidad Microbiana
11.
BMC Microbiol ; 23(1): 94, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37009882

RESUMEN

BACKGROUND: Mycobacterium intracellulare is a major etiological agent of Mycobacterium avium-intracellulare pulmonary disease (MAC-PD). However, the characteristics of the virulence of M. intracellulare and the in vivo chemotherapeutic efficacy remain unclear. In this study, we examined the virulence of nine M. intracellulare strains with different clinical phenotypes and genotypes in C57BL/6 mice. RESULTS: We classified three types of virulence phenotypes (high, intermediate, and low) based on the kinetics of the bacterial load, histological lung inflammation, and neutrophilic infiltration. High virulence strains showed more severe neutrophilic infiltration in the lungs than intermediate and low virulence strains, with 6.27-fold and 11.0-fold differences of the average percentage of neutrophils in bronchoalveolar lavage fluid, respectively. In particular, the high virulence strain M.i.198 showed the highest mortality in mice, which corresponded to the rapid progression of clinical disease. In mice infected with the drug-sensitive high virulence strain M019, clarithromycin-containing chemotherapy showed the highest efficacy. Monotherapy with rifampicin exacerbated lung inflammation with increased lymphocytic and neutrophilic infiltration into the lungs. CONCLUSIONS: The virulence phenotypes of clinical strains of M. intracellulare were diverse, with high virulence strains being associated with neutrophilic infiltration and disease progression in infected mice. These high virulence strains were proposed as a useful subject for in vivo chemotherapeutic experiments.


Asunto(s)
Infección por Mycobacterium avium-intracellulare , Neumonía , Ratones , Animales , Complejo Mycobacterium avium/genética , Infección por Mycobacterium avium-intracellulare/microbiología , Virulencia , Ratones Endogámicos C57BL , Pulmón/microbiología , Inflamación , Gravedad del Paciente
12.
ACS Chem Biol ; 17(10): 2936-2944, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36112882

RESUMEN

Ribosomally synthesized and posttranslationally modified peptides (RiPPs) with polar-functionalized fatty acyl groups are a rarely found untapped class of natural products. Although polar-functionalized fatty-acylated RiPPs (PFARs) have potential as antimicrobial agents, the repertoire is still limited. Therefore, expanding the chemical space is expected to contribute to the development of pharmaceutical agents. In this study, we performed genome mining and stable isotope-guided comparative metabolomics to discover new PFAR natural products. We focused on the feature that PFARs incorporate l-arginine or l-lysine as the starter unit of the fatty acyl group and fed 13C6,15N4-l-arginine or 13C6,15N2-l-lysine to bacterial cultures. Metabolites were extracted and compared with those extracted from nonlabeled l-arginine or l-lysine fed cultures. We identified putative PFARs and successfully isolated solabiomycin A and B from Streptomyces lydicus NBRC 13 058 and albopeptin B from Streptomyces nigrescens HEK616, which contained a sulfoxide group in the labionin moiety. The gene disruption experiment indicated that solS, which encodes a putative flavin adenine dinucleotide (FAD)-nicotinamide adenine dinucleotide (phosphate) (NAD(P))-binding protein, is involved in the sulfoxidation of aryl sulfides. The solabiomycins showed antibacterial activity against Gram-positive bacteria, including Mycobacterium tuberculosis H37Rv with a minimum 95% inhibitory concentration (MIC95) of 3.125 µg/mL, suggesting their potential as antituberculosis agents.


Asunto(s)
Productos Biológicos , Streptomyces , NAD , Flavina-Adenina Dinucleótido , Lisina , Streptomyces/metabolismo , Péptidos/metabolismo , Metabolómica , Productos Biológicos/farmacología , Productos Biológicos/metabolismo , Antituberculosos , Sulfuros , Isótopos , Sulfóxidos , Arginina , Preparaciones Farmacéuticas , Fosfatos
13.
Antimicrob Agents Chemother ; 66(9): e0017122, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35969044

RESUMEN

Tuberculosis remains a public health crisis and a health security threat. There is an urgent need to develop new antituberculosis drugs with novel modes of action to cure drug-resistant tuberculosis and shorten the chemotherapy period by sterilizing tissues infected with dormant bacteria. Lysocin E is an antibiotic that showed antibacterial activity against Staphylococcus aureus by binding to its menaquinone (commonly known as vitamin K2). Unlike S. aureus, menaquinone is essential in both growing and dormant Mycobacterium tuberculosis. This study aims to evaluate the antituberculosis activities of lysocin E and decipher its mode of action. We show that lysocin E has high in vitro activity against both drug-susceptible and drug-resistant Mycobacterium tuberculosis var. tuberculosis and dormant mycobacteria. Lysocin E is likely bound to menaquinone, causing M. tuberculosis membrane disruption, inhibition of oxygen consumption, and ATP synthesis. Thus, we have concluded that the high antituberculosis activity of lysocin E is attributable to its synergistic effects of membrane disruption and respiratory inhibition. The efficacy of lysocin E against intracellular M. tuberculosis in macrophages was lower than its potent activity against M. tuberculosis in culture medium, probably due to its low ability to penetrate cells, but its efficacy in mice was still superior to that of streptomycin. Our findings indicate that lysocin E is a promising lead compound for the development of a new tuberculosis drug that cures drug-resistant and latent tuberculosis in a shorter period.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Péptidos Cíclicos , Adenosina Trifosfato/metabolismo , Animales , Antituberculosos/química , Antituberculosos/farmacología , Ratones , Mycobacterium tuberculosis/efectos de los fármacos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Staphylococcus aureus/metabolismo , Estreptomicina/farmacología , Tuberculosis , Vitamina K 2/metabolismo
14.
Microbiol Spectr ; 10(3): e0053022, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35467367

RESUMEN

Clinical characteristics and outcomes of multidrug chemotherapy have been used as the main prognostic factors for Mycobacterium avium-intracellulare complex pulmonary disease (MAC-PD) over the last decade; however, no useful prognostic biomarkers have been reported. The aim is to ascertain whether the serum antibody titers could include useful prognostic predictors of MAC-PD. Ninety-four patients with MAC-PD were enrolled and regularly followed up with for more than 5 years or until death. Cox proportional hazard regression and receiver operating characteristic (ROC) curve analyses were used to identify predictors of mortality in this prospective observational study. According to treatment outcomes, 85 patients completed follow-up and were classified into four groups. Seventeen patients (20%) died during follow-up (median, 10.1 years; interquartile range, 8.1 to 12.4 years). All 11 patients with MAC-PD-specific death were included in the 14 patients of the group nonresponsive to the multidrug chemotherapy. They had significantly higher anti-Mycobacterium glycolipid (MBGL) antibody titers than those in the other groups and a significantly (P < 0.0001) poorer survival prognosis. The anti-MBGL antibody titers also served as a negative prognostic factor. A cutoff score of 7, which was calculated by clinical poor prognostic characteristics and anti-MBGL antibody titers, differentiated the nonresponse group and the other groups at baseline (sensitivity, specificity, and area under the curve: 92.9%, 81.7%, and 0.95, respectively). In conclusion, anti-MBGL antibody titers were useful to assess the refractory MAC-PD. The predictions of treatment outcome and mortality become more accurate by using anti-MBGL antibody and clinical poor prognostic characteristics together. IMPORTANCE The natural history of MAC-PD is challenging to predict in immunocompetent patients at diagnosis, and the current multidrug chemotherapy options are not strong enough to eliminate mycobacteria from the lungs. Therefore, the diagnosis of MAC-PD does not necessarily lead to the decision to start chemotherapy. We have also observed refractory patients in clinical practice, who were resistant to multiple-drug chemotherapy and showed persistent excretion of MAC bacilli and progressive worsening of chest radiographic findings until death. We have reported that the measurements of anti-MBGL antibody titers helped assess refractory MAC-PD in this study. Furthermore, the predictions of treatment outcome and mortality become more accurate by using the anti-MBGL antibody in addition to clinical poor prognostic characteristics, which were older age, lower body mass index, the positive results of a smear test for acid-fast bacteria (AFB), and presence of cavitary disease.


Asunto(s)
Enfermedades Pulmonares , Infección por Mycobacterium avium-intracellulare , Antibacterianos/uso terapéutico , Biomarcadores , Glucolípidos , Humanos , Enfermedades Pulmonares/diagnóstico , Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/microbiología , Complejo Mycobacterium avium , Infección por Mycobacterium avium-intracellulare/diagnóstico , Infección por Mycobacterium avium-intracellulare/tratamiento farmacológico , Infección por Mycobacterium avium-intracellulare/microbiología , Pronóstico
15.
Microbiol Spectr ; 10(2): e0245421, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35293805

RESUMEN

Pathogenic intracellular mycobacteria, such as Mycobacterium tuberculosis and Mycobacterium avium, which cause lung diseases, can grow in macrophages. Extracellular mycobacteria have been reported in the lungs, blood, and sputum of patients, indicating the involvement of these pathogens in disease progression. Erythrocytes are involved in the symptoms associated with pulmonary mycobacterial diseases, such as bloody sputum and hemoptysis; however, little attention has been paid to the role of erythrocytes in mycobacterial diseases. Herein, we found that Mycobacterium avium subsp. hominissuis (MAH) and Mycobacterium intracellulare colocalized with erythrocytes at the sites of lung infection, inside capillaries and necrotic areas of granulomas, using histopathological examinations. Electron microscopy showed that MAH adhered and entered human erythrocytes when they were cocultured in vitro. MAH adhered to erythrocytes through complement receptor 1 and cell-surface sialo-glycoproteins. Importantly, MAH grew vigorously without causing any pronounced damage to erythrocytes. This erythrocyte-mediated enhancement of MAH growth occurred extracellularly depending on its direct attachment to erythrocytes. In contrast, MAH failed to multiply inside erythrocytes. Similarly, erythrocytes augmented the growth of other pathogenic mycobacteria, such as M. intracellulare and M. tuberculosis. THP-1 cell-derived human macrophages preferentially phagocytosed erythrocytes that were attached to mycobacteria (compared to bacteria alone), suggesting that erythrocyte-attached mycobacteria are an efficient infectious source for macrophages. Our findings provide new insights into the pathogenesis of mycobacterial diseases and offer an alternative and useful strategy for treating mycobacterial disease. IMPORTANCE Pathogenic mycobacteria, such as Mycobacterium tuberculosis, Mycobacterium avium subsp. hominissuis (MAH), and Mycobacterium intracellulare, cause pulmonary infections as intracellular parasites of lung macrophages and epithelial cells. Here, using histopathological examinations we found that MAH and M. intracellulare colocalized with erythrocytes in lung infection sites. Subsequent studies demonstrated that direct interaction with erythrocytes enhances the extracellular proliferation of mycobacteria based on the following results: 1. MAH adhered and invaded human erythrocytes upon coculture in vitro; 2. MAH adhered to erythrocytes through complement receptor 1 and cell-surface sialo-glycoproteins; 3. MAH rapidly proliferated when directly attached to erythrocytes but not within them; 4. other mycobacteria, such as M. intracellulare and M. tuberculosis, also proliferated in the same way as MAH. The finding that pathogenic mycobacteria grow extracellularly in an erythrocyte-dependent manner is of considerable clinical importance for understanding disease progression and latent infection.


Asunto(s)
Infección por Mycobacterium avium-intracellulare , Mycobacterium tuberculosis , Tuberculosis , Progresión de la Enfermedad , Eritrocitos , Glicoproteínas , Humanos , Mycobacterium , Complejo Mycobacterium avium , Receptores de Complemento , Tuberculosis/microbiología
16.
Sci Rep ; 12(1): 4310, 2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35279668

RESUMEN

Tuberculosis (TB) is fatal in elephants, hence protecting elephants from TB is key not only in the conservation of this endangered animal, but also to prevent TB transmission from elephants to humans. Most human TB cases arise from long-term asymptomatic infections. Significant diagnostic challenges remain in the detection of both infection and disease development from latency in elephants due to their huge bodies. In this study, we assessed cryopreserved sera collected for over 16 years, from the first Japanese treatment case of elephant TB. Semi-quantification of IgG levels to 11 proteins showed high detection levels of 3 proteins, namely ESAT6/CFP10, MPB83 and Ag85B. The level of IgG specific to these 3 antigens was measured longitudinally, revealing high and stable ESAT6/CFP10 IgG levels regardless of onset or treatment. Ag85B-specifc IgG levels were largely responsive to onset or treatment, while those of MPB83 showed intermediate responses. These results suggest that ESAT6/CFP10 is immunodominant in both asymptomatic and symptomatic phases, making it useful in the detection of infection. On the other hand, Ag85B has the potential to be a marker for the prediction of disease onset and in the evaluation of treatment effectiveness in elephants.


Asunto(s)
Elefantes , Mycobacterium tuberculosis , Tuberculosis , Animales , Antígenos Bacterianos , Proteínas Bacterianas , Elefantes/microbiología , Inmunoglobulina G , Tuberculosis/diagnóstico , Tuberculosis/veterinaria
17.
FEBS J ; 289(16): 4981-4997, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35202511

RESUMEN

Isoprenoids with reduced Z,E-mixed prenyl groups are found in various organisms. To date, only polyprenol reductases (PR-Dol) involved in dolichol biosynthesis have been identified as enzymes capable of reducing Z,E-mixed prenyl groups. Although C35 -isoprenoids with reduced Z,E-mixed prenyl groups are found in mycobacteria, Z,E-mixed heptaprenyl reductase (HepR) remains unidentified. In the present study, the identification and functional analysis of HepR was performed. No PR-Dol homolog gene was detected in the genome of Mycolicibacterium vanbaalenii. However, a homolog of geranylgeranyl reductase (GGR), which reacts with an all-E prenyl group as a substrate, was encoded in the genome; thus, we analyzed it as a HepR candidate. In vitro enzymatic assay and in vivo gene suppression analysis identified the GGR homolog as HepR and revealed that HepR catalyzes the reduction of ω- and E- prenyl units in Z,E-mixed heptaprenyl diphosphates, and C35 -isoprenoids are mainly biosynthesized using E,E,E-geranylgeranyl diphosphate as a precursor. Thus, it was demonstrated that the Z,E-mixed prenyl reductase family exists in the GGR homologs. To the best of our knowledge, this is the first identification of a new type of Z,E-mixed prenyl reductase with no sequence homology to PR-Dol. The substrate specificity of HepR significantly differed from that of GGR, suggesting that it is a new enzyme. HepR homologs are widely distributed in mycobacterial genomes, and lipid analysis suggests that many strains, including pathogenic species, produce HepR metabolites. The discovery of this new enzyme will promote further research on Z,E-mixed isoprenoids.


Asunto(s)
Transferasas Alquil y Aril , Mycobacterium , Mycobacterium/genética , Neopreno , Oxidorreductasas/genética , Terpenos
18.
Microbiology (Reading) ; 168(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36748577

RESUMEN

Tuberculosis (TB) is treated by chemotherapy with multiple anti-TB drugs for a long period, spanning 6 months even in a standard course. In perspective, to prevent the emergence of antimicrobial resistance, novel drugs that act synergistically or additively in combination with major anti-TB drugs and, if possible, shorten the duration of TB therapy are needed. However, their combinatorial effect cannot be predicted until the lead identification phase of the drug development. Clustered regularly interspaced short palindromic repeats interference (CRISPRi) is a powerful genetic tool that enables high-throughput screening of novel drug targets. The development of anti-TB drugs promises to be accelerated by CRISPRi. This study determined whether CRISPRi could be applicable for predictive screening of the combinatorial effect between major anti-TB drugs and an inhibitor of a novel target. In the checkerboard assay, isoniazid killed Mycobacterium smegmatis synergistically or additively in combinations with rifampicin or ethambutol, respectively. The susceptibility to rifampicin and ethambutol was increased by knockdown of inhA, which encodes a target molecule of isoniazid. Additionally, knockdown of rpoB, which encodes a target molecule of rifampicin, increased the susceptibility to isoniazid and ethambutol, which act synergistically with rifampicin in the checkerboard assay. Moreover, CRISPRi could successfully predict the synergistic action of cyclomarin A, a novel TB drug candidate, with isoniazid or rifampicin. These results demonstrate that CRISPRi is a useful tool not only for drug target exploration but also for screening the combinatorial effects of novel combinations of anti-TB drugs. This study provides a rationale for anti-TB drug development using CRISPRi.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Isoniazida/farmacología , Etambutol/farmacología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Rifampin/farmacología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Mycobacterium tuberculosis/genética , Pruebas de Sensibilidad Microbiana
19.
FASEB J ; 36(1): e22096, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34907600

RESUMEN

Tuberculosis is a communicable disease caused by Mycobacterium tuberculosis which primarily infects macrophages and establishes intracellular parasitism. A mycobacterial virulence factor Zn2+ metalloprotease 1 (Zmp1) is known to suppress interleukin (IL)-1ß production by inhibiting caspase-1 resulting in phagosome maturation arrest. However, the molecular mechanism of caspase-1 inhibition by Zmp1 is still elusive. Here, we identified GRIM-19 (also known as NDUFA13), an essential subunit of mitochondrial respiratory chain complex I, as a novel Zmp1-binding protein. Using the CRISPR/Cas9 system, we generated GRIM-19 knockout murine macrophage cell line J774.1 and found that GRIM-19 is essential for IL-1ß production during mycobacterial infection as well as in response to NLRP3 inflammasome-activating stimuli such as extracellular ATP or nigericin. We also found that GRIM-19 is required for the generation of mitochondrial reactive oxygen species and NLRP3-dependent activation of caspase-1. Loss of GRIM-19 or forced expression of Zmp1 resulted in a decrease in mitochondrial membrane potential. Our study revealed a previously unrecognized role of GRIM-19 as an essential regulator of NLRP3 inflammasome and a molecular mechanism underlying Zmp1-mediated suppression of IL-1ß production during mycobacterial infection.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Inflamasomas/metabolismo , Macrófagos/metabolismo , Mycobacterium tuberculosis/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Bacterianas , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Inflamasomas/genética , Metaloproteasas , Ratones , Membranas Mitocondriales/metabolismo , Mycobacterium tuberculosis/genética , NADH NADPH Oxidorreductasas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética
20.
Int J Mycobacteriol ; 10(4): 421-427, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34916462

RESUMEN

Background: Pulmonary tuberculosis (PTB) is still a major health problem worldwide. The espD has a potential to be a new biomarker because it is important for the espA, espC, and ESX-1 protein secretion system that are actively expressed in active multiplication of Mycobacterium tuberculosis complex. Methods: A total of 55 sputum samples and 41 culture isolates from newly diagnosed PTB patients at Dr. Soetomo Academic Hospital were collected from September 2016 to April 2019. The tested samples using polymerase chain reaction targeted 555 bp of espD gene and sequencing. Clone Manager Version 6 and NCBI BLAST were used to align the gene sequence against wild-type M. tuberculosis. The prediction of T-cell epitope in espD gene was detected by GENETYX. The three-dimensional (3D) structure of espD was modeled by SWISS-MODEL and I-TASSER and was visualized with PyMOL. Results: From 55 sputum samples, 43 (78.18%) showed positive results, and all culture isolates showed positive results. In addition, all sequenced samples showed 100% homolog with M. tuberculosis H37Rv gene without detected variant or mutation. There were four T-cell epitopes that could be obtained. The 3D model had a I-TASSER confidence score of 3.91 with estimated RMSD of approximately 14.5 Å. The structure consists of a main fold of a three-stranded antiparallel ß-sheet and a long α-helix surrounded by several minor secondary structures. Conclusions: This study provides a brief information about the sequence, epitope prediction, and 3D structure of EspD protein from M. tuberculosis strains in Indonesia.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Biomarcadores , Humanos , Indonesia , Mycobacterium tuberculosis/genética , Esputo , Tuberculosis Pulmonar/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...